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The low-energy A-nucleon interaction has been represented by several effective central potentials which 
have a hard core of radius 0.4 F and four-parameter attractive wells with an interaction for large separations 
suggested by the two-pion-exchange mechanism. These potentials, which are consistent with the binding-
energy data for the light hypernuclei, were taken to represent the A-nucleon interaction in even-parity 
states for energies greater than those which play a role in the binding of the light hypernuclei. These poten
tials and others of reduced strength were taken to represent the interaction in odd-parity states. The binding 
energy D of a A particle in nuclear matter and A-nucleon scattering cross sections were calculated with these 
potentials. The calculated cross sections and empirical cross sections for energies less than 76 MeV in the 
zero-momentum frame are in agreement only if the interaction in odd-parity states is taken to be (approxi
mately) as strong as that in even-parity states. These effective central potentials of equal strength in even-
parity and odd-parity states lead to values of D close to 40 MeV. 

I. INTRODUCTION 

INFORMATION about the strength of the A-nucleon 
interaction has been obtained primarily from analy

ses of the binding-energy data for the light hypernu
clei.1-6 Although the A-nucleon interaction may well 
contain noncentral components,7-9 existing knowledge 
of the structure of the light hypernuclei is not suffici
ently detailed to allow the determination of more than 
the parameters of effective central potentials which 
represent both central and noncentral components of 
the A-nucleon interaction.1 Moreover, it has not been 
possible to establish the presence of possible three-
body A-nucleon interactions in these analyses.6 Even 
for assumed two-body central potentials, however, 
analyses of the binding-energy data have not been suf
ficiently precise to allow a determination of parameters 
characterizing both the range and depth of A-nucleon 
interaction potentials.1,2 When the A-nucleon interac
tions are represented by effective two-body central po
tentials, the binding energies of the light hypernuclei 
are determined primarily by the 5-wave interactions.10 

Analyses of the binding-energy data for the light hyper-
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nuclei have, therefore, led to specification of the depths 
of effective central two-body potentials of assumed 
ranges, which represent the A-nucleon interaction in S 
states.1"-5 

The most reliable analyses of the binding energies of 
the light hypernuclei are those for AH3 and AHe5. These 
analyses have led to specification of depth parameters 
characterizing the spin-averaged A-nucleon interaction 
in S states for each system, for assumed shapes and 
ranges.1-5 For effective central two-body potentials, 
the average interactions in these systems are 

Vz=(3Vs+Vt)/4: for AH3, (la) 
and 

V,= (3Vt+Vs)/4 for AHe5, (lb) 

in terms of the singlet and triplet A-nucleon potentials 
Vs and Vt> The combination of potentials (la) depends 
upon the currently accepted assumption that the singlet 
interaction is more attractive than the triplet.11 The 
combination (lb), on the other hand, is independent of 
assumptions about the relative strength of V8 and Vh 

the spin of the (alpha-particle) nucleon core being zero. 
Parameters characterizing the average potentials Vz 

and F5 have been specified for potentials with and with
out hard cores.1"5 The well-established existence of a 
hard core in the nucleon-nucleon interaction suggests 
that a hard core is also a characteristic of the A-nucleon 
interaction. It is, therefore, reasonable to represent 
A-nucleon interactions by potentials with hard cores in 
situations where potentials are meaningful. Recent de
tailed analyses of the hypertriton AH3 in terms of hard
core potentials have indicated that the zero-energy 
scattering length 

^ - 2 . 0 F (2a) 

provides an approximate characterization of F3 for 

11 For discussions of the evidence supporting this assignment, see 
Ref. 3 and R. H. Dalitz, in a paper presented at the (CERN) In
ternational Conference on Hyperfragments, St. Cergue, Switzer
land, March 1963, and subsequently issued as Report No. 
EFINS-63-29 by the Enrico Fermi Institute for Nuclear Studies, 
University of Chicago (unpublished). 
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hard-core potentials with ranges suggested by consider
ation of the two-pion-exchange (TPE) mechanism.12 Al
though the five-body hypernuclear system has not been 
studied in as great detail as has the three-body system, 
studies which have been made indicate that the zero-
energy scattering length 

<z5--0.77F (2b) 

provides an approximate characterization of the aver
age potential V& for ranges suggested by the TPE 
mechanism.1,13 

The A-nucleon interaction in states with relative 
orbital angular momentum />0 (primarily P states) 
can play a significant role in determining the binding 
energy B& of a A particle in a heavy hypernucleus.613,14 

Since the state of a single A particle bound in a hyper
nucleus is not restricted by the Pauli principle, the 
binding energy B\ will approach a limiting value D as 
the mass number A of the hypernucleus approaches 
infinity, on account of the saturation of the central 
density in heavy nuclei. The experimental determina
tion of D is currently the object of considerable study. 
Although estimates of D ranging from 21 to 40 MeV 
have been made,15 recent measurements of the binding 
energies of hypernuclei with mass numbers in the range 
60 < A < 100 have led to the estimate that a value of D 
in the neighborhood of 30 MeV is most likely on the 
basis of current data.16 The asymptotic binding energy 
D has been calculated in terms of phenomenological 
two-body interaction potentials F5 with ranges sug
gested by consideration of the TPE mechanism and 
having zero-energy scattering lengths approximately 
equal to that given in (2b).1'6,13,14 When these 5-wave 
potentials have been assumed to be appropriate also 
to higher angular-momentum states, the calculated 
values of D have been considerably in excess of 30 MeV 
for potentials without hard cores1,6 and for hard-core 
potentials with two-parameter attractive wells having 
relatively long ranges suggested by consideration of the 
TPE mechanism13,14; for hard-core potentials having 
two-parameter attractive wells of shorter range, also 
suggested by the TPE mechanism, values D—30 MeV 
have been obtained.13 Comparison of the results of these 
calculations for the longer ranged attractive wells with 
the smaller empirical estimates (D<30 MeV) have led 
to the suggestion that the A-nucleon interaction in 
higher angular momentum states (at least in P states) 
may be less attractive than it is in S states.6,14 The 

12 Values a$ — —1.8 F and — 2.7 F have been obtained by D. R. 
Smith and B. W. Downs [Phys. Rev. 133, B461 (1964)] for poten
tials with a hard-core radius of 0.4 F and two-parameter exponen
tial wells with range parameters R — 0.395 F and 0.847 F, respec
tively. Differences in a% of this magnitude would not have a very 
large effect in the calculations reported in this paper; see Fig. 1. 

13 B. W. Downs and W. E. Ware, Phys. Rev. 133, B133 (1964). 
14 J. D. Walecka, Nuovo Cimento 16, 342 (1960). 
15 A summary of empirical estimates of D is given in Ref. 13. 
16 D. H. Davis, R. Levi Setti, M. Raymund, O. Skjeggestad, 

G. Tomasina, J. Lemonne, P. Renard, and J. Sacton, Phys. Rev. 
Letters 9, 464 (1962). 

shorter ranges, which have been used in these calcula
tions,13 were suggested by effective range theory, in 
which the introduction of a hard core leads to a signifi
cant compression of a two-parameter attractive well. 
The longer ranges have been fixed with partial or com
plete neglect of this compression.13,14 The use of com
pressed attractive wells leads to relatively small con
tributions to D from states with />0. Therefore, the 
use of the shorter ranged attractive wells without sup
pression of the interaction in higher angular momen
tum states is, to some extent, equivalent to the use of 
the longer ranged wells with some suppression. 

The A-nucleon interaction in states with relative orbi
tal angular momentum />0 will play a significant role 
in A-nucleon scattering for incident A-particle energies 
of about 20 MeV or more in the laboratory. It is to be 
expected that extensive scattering data (when these 
become available for the A-nucleon system) will ulti
mately lead to an understanding of the A-nucleon inter
action in these higher angular momentum states, just 
as they have in the case of the nucleon-nucleon inter
action. The existing scattering data can be used at the 
present time to make a rough check of assumptions 
about the A-nucleon interaction in states with Z>0.8,9'17 

Alexander etal.18 have reported fourteen A-pro ton elastic-
scattering events, which led to an average cross section 
of (22.3±5.9) mb for energies in the range 30-168 MeV 
in the zero-momentum frame. Sixteen A-proton elastic-
scattering events have been reported by Arbuzov et al}9 

for energies in the range 32-320 MeV in the zero-
momentum frame; these data led to an average cross 
section of (42±16) mb. The most recently reported 
elastic-scattering data are those of Groves,20 who ob
tained an average cross section of (20±5) mb for zero-
momentum frame energies in the range 5-320 MeV on 
the basis of 26 events. Alexander et al. and Groves also 
reported average cross sections for the parts of their 
energy ranges above and below 76 and 68 MeV, re
spectively. Although the average cross sections reported 
in these three papers are approximately consistent with
in the quoted errors, the angular distributions are not. 
Arbuzov et al. reported a pronounced forward-back
ward asymmetry, 13 of the 16 observed A particles 
having been scattered into the backward hemisphere. 
Alexander et al. and Groves found no such evidence of a 
pronounced forward-backward asymmetry. 

It is the purpose of this paper to report the results of 
a study of the effects of partial suppression of the A-
nucleon interaction in odd-parity states on D and on 
A-nucleon scattering cross sections. Central potentials 
with hard cores and four-parameter attractive wells 

17 J. S. Kovacs and D. B. Lichtenberg, Nuovo Cimento 13, 371 
(1959). 

18 G. Alexander, J. A. Anderson, F. S. Crawford, Jr., W. Laskar, 
and L. J. Lloyd, Phys. Rev. Letters 7, 348 (1961). 

19 B. A. Arbuzov, E. N. Kladnitskaya, V. N. Penev, and R. N. 
Raustov, Zh. Eksperim. i Teor. Fiz. 42, 979 (1962) [translation: 
Soviet Phys.—JETP 15, 676 (1962)]. 

20 T. H. Groves, Phys. Rev. 129, 1372 (1963). 
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were used in these calculations in order to provide for 
various distributions of attraction without over-all com
pression of the attractive well. Two-body S-wave po
tentials of this type, which are consistent with the 
hypernuclear binding energy data, are described in 
Sec. II. The values of D to which these potentials lead 
when they are applied to all angular momentum states 
are given in Sec. I l l , and the amount of odd-parity sup
pression which may be indicated is discussed. For the 
calculation of A-nucleon scattering cross sections, these 
-S-wave potentials were taken to represent the interac
tion in all even-parity states, and a variety of odd-parity 
interactions was considered. The resulting cross sections 
are given and discussed in Sec. IV. The validity of the 
representation of the A-nucleon interaction by effective 
central potentials is briefly discussed in Sec. V. 

II. THE A-NUCLEON POTENTIALS FOR 
S-WAVE INTERACTIONS 

Central two-body potentials, incorporating the effects 
of possible noncentral components, are assumed to pro
vide a reliable representation of A-nucleon interactions 
in the light hypernuclei. Such potentials, whose param
eters are deduced from analyses of the binding energies 
of the light hypernuclei, represent A-nucleon interac
tions in S states.10 We represented these interactions by 
five-parameter potentials of the form 

V(r)— oo r<c 
= -U c<r<c+b (3) 
= -TTexpC-2(r-c) / ie] r>c+b. 

Three of the parameters (c, R, and W) in (3) were fixed 
once and for all; three values were taken for b; and the 
fifth parameter U was determined by the requirement 
that the potential combinations (1) have the scattering 
lengths (2) for each choice of b. 

The hard-core radius 

c=OAF (4a) 

was chosen as being representative of the short-range 
repulsions characteristic of strong interactions between 
baryons. The range parameter R, which determines the 
asymptotic form of the potential (3), was chosen to 
represent the TPE mechanism, which is expected to 
dominate the A-nucleon interaction in the region of large 
separations. The value, 

R = 0.847 F, (4b) 

which was used, corresponds to an intrinsic range of 
1.5 F for an exponential potential; the same intrinsic 
range for a Yukawa potential corresponds to a Yukawa 
range parameter equal to one-half the pion Compton 
wavelength, appropriate to the TPE mechanism. 

The outstanding feature of the A-nucleon interaction 
in S states is the strong spin dependence indicated by 
Eqs. (1) and (2). After having fixed the parameters c 
and R, we still had three parameters in the potential 

form (3) with which account of this spin dependence 
could be taken. We assumed that the parameters W and 
b are spin-independent and, consequently, that the 
depth U of the inner square well provides the entire 
spin dependence of the S-wave A-nucleon interaction 
represented by the potential (3). The decision to choose 
the depth W of the asymptotic exponential well to be 
spin-independent was suggested by the result of a cal
culation of the TPE contribution to the A-nucleon scat
tering matrix. This calculation by Schrils and Downs21 

led to a spin-independent TPE contribution to the zero-
energy A-nucleon scattering length. This result suggests 
that the spin dependence of the S-wave A-nucleon inter
action may be primarily a characteristic of the region of 
small separations where exchange mechanisms other 
than TPE make significant contributions to the inter
action. This inner region is represented in (3) by a spin-
dependent square well. 

The value 
PF-150 MeV, (4c) 

which was taken for the depth of the asymptotic ex
ponential well, was suggested by the potential obtained 
by Gupta22,23 to represent the TPE contribution to the 
low-energy nucleon-nucleon interaction. Under the as
sumption of a universal pion-baryon interaction and 
with the neglect of the mass differences among the 
baryons, the low-energy TPE A-nucleon potential can 
be obtained from Gupta's nucleon-nucleon potential by 
setting [ T ( 1 ) - T ( 2 ) ] = 0 and by replacing the pseudo-
scalar-pseudoscalar coupling-constant product (gNNir2)2 

by (giViVx2)(gA27r2).7~9'21 With the parameters (4b) and 
(4c), the asymptotic exponential in (3) provides a good 
representation of this TPE A-nucleon potential (which 
is spin-independent!) in the region of very large separa
tions (r>2 F) if (g™//47r^)(gAS.2/4^)-(13)2.24.25 

Although there is some evidence to indicate that the 
appropriate use of the Gupta potential is justified in the 
description of nucleon-nucleon scattering,26 the adapta
tion of the Gupta potential to the A-nucleon interaction 
has not been justified. In particular, it has been pointed 
out by Schrils and Downs that the neglect of the mass 
differences among the baryons may not be justified in 
the calculation of the TPE contribution to the A-nucleon 
potential.27 

21R. Schrils and B. W. Downs, Phys. Rev. 131, 390 (1963). 
22 S. N. Gupta, Phys. Rev. 117, 1146 (1960); and Nuovo 

Cimento 18, 823 (1960). 
23 For a discussion of limitations on the use of Gupta's TPE 

potential, see G. Breit, Ann. Phys. (N. Y.) 16, 346 (1961). 
24 The use of the value W= 150 MeV, to which this value of the 

coupling-constant product corresponds, was taken to be repre
sentative; in particular, its use is not intended to imply the 
equality of the coupling constants gNNir and gA2*. Values W~ 100 
MeV and 200 MeV were also considered in Ref. 25. 

25Budh Ram, thesis, University of Colorado, 1963 (unpub
lished). 

26 G. Breit, K. E. Lassila, H. M. Ruppel, and M. H. Hull, Jr., 
Phys. Rev. Letters 6, 138 (1961); and G. Breit, Rev. Mod. Phys, 
34, 766 (1962). 

27 See Ref. 21, especially footnote 35. 
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TABLE I. Potential parameters and effective ranges for average 
potentials Vz and Vs. 

b 
(F) 

Uz 
(MeV) 

^0,3 

(F) 
Us 

(MeV) 
7*0,5 

(F) 
Wexp(-2b/R) 

(MeV) 

0.7 
1.1 
1.5 

96.o 
43.3 
24.i 

3.54 
3.8X 
4.27 

51.3 
27.6 
16.i 

7.5, 
7.82 
8.53 

29.7 
11.2 
4.3 

Three values 

(4d) 

of the range of the inner square well were used to allow 
for different extents of the spin-dependent inner region 
of the potential (3). For each value of b, the depths Uz 
and U& of the inner square wells of the potential combi-
nation^s (1) were determined by the requirement that 
the corresponding potentials Vz and V$ have the scat
tering lengths (2). The depths Ua and Ut of the inner 
wells of the singlet and triplet potentials are related to 
Uz an,d Us by equations of the form (1) since all other 
parameters in the potential (3) have been taken to be 
spin-independent. 

Scattering lengths for the potential (3) with the 
parameters given in Eqs. (4) have been calculated as a 
function of the depth U of the inner square well. The 
range of calculated scattering lengths was large enough 
to include the scattering lengths appropriate to the 
singlet and triplet potentials V8 and Vt. The results of 
these calculations are given in Fig. 1. 

The values of t/3 and Uz which correspond to the 
scattering lengths az~ — 2.00 F and #5=—0.77 F are 
given in Table I, along with the corresponding effective 
ranges f 0,3 and f 0,5 of the full average potentials Vz and 
W The depths W exp (—2b/R) of the outer exponen
tial wells at the interface between inner and outer wells 
are also given in Table I for comparison. The depths Us 

and Ut of the inner square wells of the singlet and 
triplet potentials, which correspond to the average po
tentials of Table I, are given in Table II, along with the 
low-energy scattering parameters of the full singlet and 
triplet potentials V8 and Vt> 

III. THE BINDING ENERGY OF A A-PARTICLE 
IN NUCLEAR MATTER 

The independent-pair approximation has been used 
to estimate the asymptotic binding energy D of a A-par-

TABLE II. Potential parameters and low-energy scattering 
parameters for singlet and triplet potentials. 

b 
(F) 

0.7 
1.1 
1.5 

U8 
(MeV) 

118.4 
51.2 
28.! 

(F) 

-3.8o 
- 3 . 4 4 
-3 .2 8 

rQ,s 
(F) 

2.69 
3.O4 
3.48 

Ut 
(MeV) 

29.o 
19.8 
12.i 

(F) 

- 0 . 4 , 
- 0 . 4 5 
- 0 . 4 3 

ro,t 

(F) 

12.9« 
14.45 
16.70 

FIG. 1. Depths U of inner square wells as functions of scattering 
length a of entire potential. 

tide in nuclear matter by Walecka14 and, subsequently, 
by Downs and Ware.13 In this approximation, the bind
ing energy is given by 

-[4/(27r)3](M**/M*)3/ dk 

••{ 
X / e-ik-r75W^BG(k,r)Jr (5) 

for nuclear matter which is taken to be a spin-saturated 
collection of an equal number of neutrons and protons, 
having a Fermi momentum k$. The effective mass of a 
nucleon in nuclear matter is MN*, and the reduced ef
fective mass of a A-nucleon pair is ju*. The wave func
tion \l/BG(Kr) is the solution of the self-consistent Bethe-
Goldstone equation for the relative motion of a A-nu
cleon pair imbedded in nuclear matter and having rela
tive momentum k. The two parts Do and DA of the 
binding energy D arise from the hard core and the at
tractive well in the average A-nucleon potential F5, 
respectively. 

For the calculations reported in this section we used 
(5) to estimate the values of the asymptotic binding 
energy D which result when the central S-wave poten
tials, whose parameters are given in Table I, are 
assumed to be appropriate to all angular-momentum 
states. The method of calculation was that described 
by Downs and Ware13; and the constants which they 
used were also used here: The density of nuclear matter 
was taken to be 

P=0.172nucleons/F3, (6a) 
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appropriate to the central density of heavy nuclei28 and 
corresponding to the Ferrni momentum 

* F = 1 . 3 6 « P - 1 ; (6b) 

and the baryon effective masses were taken to be 

MN* = 0.735MN (7a) 

TABLE III. The binding energy D and the partial-wave 
contributions to D. 

and 
MA* = MA. (7b) 

I t has been found that the S-wave solution of the 
Bethe-Goldstone equation for the interaction of two 
nucleons in nuclear matter is well approximated by the 
solution corresponding to the hard-core interaction 
alone (that is, when the attractive well is neglected in 
the Bethe-Goldstone equation).29'30 We have therefore 
assumed that the 5-wave component of \[/BG(Kr) can 
be replaced in (5) by the S-wave solution for a hard-core 
interaction alone. The contributions to D which arise 
from higher partial waves have been estimated with the 
help of several other approximations. 

The first three partial-wave contributions Dc1 to the 
hard-core part of (5) have been calculated by Downs 
and Ware13 for the hard-core radius (4a) and the Fermi 
momentum (6b): 

MeV for (8) 

The value of Dc° was obtained by numerical integration 
of (5) with the 5-wave solution of the Bethe-Goldstone 
equation for the hard-core interaction alone; and the 
values of Dc1 and Dc

2 were obtained from approximate 
expressions suggested by Gomes31 and Walecka.14'30 

In order to estimate the partial-wave contributions 
DA1 to the attractive-well part of (5), we have approxi
mated \//BG(Kr) by the function 

V^(k,r) = 1.05{l— e x p [ - 2 J b ( r - c ) ] } exp(*- r ) , (9) 

suggested by Downs and Ware.13 The 5-wave com
ponent of this function gives a good representation of 
the 5-wave solution of the Bethe-Goldstone equation 
(for the hard-core interaction alone) for all values of k 
which contribute to (5) and for all values of r for which 
the A-nucleon interaction is significant; and its approxi
mation of the partial-wave solutions of the Bethe-Gold
stone equation for / > 0 is expected to be at least as good 
as the Born approximation.13 

With the function (9), the total attractive contribu
tion DA to (5) can be expressed in closed form for simple 

28 R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956). 
29 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. 

(N. Y.) 3, 241 (1958). 
30 J. D. Walecka, thesis, Massachusetts Institute of Technology, 

1958. 
31 L. C. Gomes, thesis, Massachusetts Institute of Technology, 

1958. 

b 
(F) 

0.7 
1.1 
1.5 

ub 
(MeV) 

51.3 
27.6 
16.! 

D 
(MeV) 

41.3 
40.3 
40.x 

D» 
(MeV) 

15.7 

13.: 
9.o 

D1 

(MeV) 

21.3 
22.8 
26.o 

D* 
(MeV) 

3.7 
3.9 
4.4 

direct (nonexchange) potentials such as (3); and the 
partial-wave contributions DA1 can easily be evaluated 
by numerical integration. The results of such calcula
tions for the potentials of Table I are given in Table I I I . 
The average potentials V& are identified in the first two 
columns of Table I I I . The next four columns contain 
values of the binding energy D and the first three par
tial-wave contributions Dl; these values include both 
attractive and core contributions. The values of Dl>2, 
which are between 0.5 and 0.7 MeV, indicate that inter
actions in states with l>2 make negligibly small con
tributions to D. 

The main features of Table I I I are that all the poten
tials lead to values of D close to 40 MeV and that the 
P-wave contribution to D is dominant in each case. 
Larger values of b correspond to greater proportions of 
attraction in the region of large separations. This leads 
to increases in Dl>0 with increasing b and to correspond
ing decreases in Do, the net effect being a small decrease 
in D with an increase in b. The same effects appear if 
different values of W are used with a given value of b: 
The larger the value of W, the larger are D and the 
partial-wave contributions Dl>0 and the smaller is D° 
(at least for values of W in the range 100-200 MeV and 
the values of b considered here).32 

The values of D given in Table I I I are consistent with 
the largest empirical estimates,15 but are considerably 
in excess of the currently preferred value of about 
30 MeV.16 Reductions of about 40% in the attractive 
interactions in odd-parity states would lead to values 
Z)=30 MeV for all the potentials considered here. If a 
value of D close to 30 MeV is finally established empiri
cally, such a reduction (at least in P states) would be 
indicated by these calculations, in accordance with the 
suggestion of Walecka.14 In this connection, it should 
be noted that even greater reductions might be re-
required if three-body A-nucleon interactions make an 
appreciable positive contribution to Z>,33 while having a 
smaller effect in determining the average A-nucleon 
interaction in AHe5. 

32 The smallest value of D obtained in similar calculations in 
Ref. 25 was 38.5 MeV for W= 100 MeV and 6 = 0.7 F, the smallest 
values considered for each parameter. The value Z> = 42.7 MeV 
was obtained in Ref. 13 for an average potential having a hard
core radius 0.4 F and a two-parameter exponential well having 
the range parameter (4b). 

33 See J. D. Chalk, III, and B. W. Downs, Phys. Rev. 132, 2728 
(1963), and other references cited there. 
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IV. A-NUCLEON SCATTERING 

In this section we report the results of calculations of 
A-nucleon scattering cross sections for four energies in 
the range for which experimental data have been re
ported.18-20 The S-wave potentials, whose parameters 
are given in Table II, were assumed to be appropriate to 
the A-nucleon interaction in all even-parity states. For 
the interaction in odd-parity states, three alternatives 
were considered: 

even lj w even i) (10a) 

= ( 0 . 6 C / e v e n Z , 0 . 6 ^ e v e n ^ ) ( 1 0 b ) 

= (0,0)— hard core only. (10c) 

The variety of choices (10) was made in order to investi
gate the effects on the cross sections of possible reduc
tions in the strength of the interaction suggested by 
calculations of the asymptotic binding energy D, such 
as those reported in Sec. III. 

The very-low-energy (S-wave) A-nucleon scattering 
cross sections corresponding to the potentials of Table 
II can be obtained from the scattering parameters in 
that table. In order to calculate the cross sections for 
higher energies, we employed a partial-wave analysis 
in which the scattering amplitudes are calculated di
rectly and in which the phase shifts do not appear ex
plicitly.34 The amplitude for scattering from a central 
potential can be expressed as the sum of partial scatter
ing amplitudes 

/ ( « ) = £ StMcosfl) (Ha) 
i 

in terms of the complex partial amplitude coefficients 

Si=&i+tti. (lib) 

The differential cross section is the absolute square of 
(11a), and the total cross section is 

er=(4*/*)Z;**. (12) 

i 

The phase shifts can be obtained from the relation 

8i=ttLTrl(4i/(Ri). (13) 
For a potential which vanishes beyond some radius 
r=d, the partial amplitude coefficients are 

-(2l+l)d i(2l+l)dji(kd) 
Sl= + (14a) 

[_kdhi^(kd)jZt kdhi^(kd) 

where 

d /dRt(r)\ 
Ri(d)\ dr )r=d 

l-l+ikd, for 1=0, 

i - ( / - l)+kdhu-iM {kd)/hP ikd),- .- for l> 0 . 
(14b) 

34 See, for example, B. W. Downs, Am. J. Phys. 30, 248 (1962). 

TABLE IV. Partial amplitude coefficients in Fermis for even-
parity potentials of Table II with 5 = 1.1 F and odd-parity poten
tials given in (10a). 

£ = 20 MeV £ = 40 MeV £ = 75 MeV £=150 MeV 
S I (Ri $i (Ri di (Ri 4i (Ri $i 

0 0.585 
1 0.669 
2 0.077 
3 0.009 
4 0.001 

0 0.050 
1 0.334 
2 0.062 
3 0.008 
4 0.001 

0.324 
0.111 
0.001 

0.002 
0.027 

0.282 
0.871 
0.203 
0.038 
0.009 

-0.095 
0.399 
0.148 
0.035 
0.009 

0.089 
0.287 
0.008 

0.009 
0.055 
0.004 

0.027 
0.797 
0.406 
0.105 
0.033 

-0.199 
0.332 
0.251 
0.091 
0.032 

0.001 
0.356 
0.047 
0.002 

0.061 
0.053 
0.018 
0.002 

-0.168 0.064 
0.478 0.170 
0.626 0.166 
0.262 0.020 
0.097 0.002 

-0.236 0.162 
0.117 0.009 
0.310 0.039 
0.184 0.010 
0.087 0.002 

In (14), Ri(r) is the solution of the radial Schrodinger 
equation corresponding to the angular momentum 
eigenvalue /; and, for the calculations of this section, fik 
is the relative momentum in the zero-momentum frame. 

The first five partial amplitude coefficients (14a) were 
calculated for the singlet and triplet potentials described 
in connection with (10) for the energies 20, 40, 75, and 
150 MeV in the zero-momentum frame.35,36 The real 
and imaginary parts of these coefficients are given in 
Tables IV and V for the potentials with J = 1 . 1 F ; 5 = 0 
and 1 identifies the singlet and triplet spin states. In 
these table dashes indicate that the corresponding coef
ficients are zero to three decimal places. For the odd-
parity interaction (10c), the partial amplitude coef
ficient Sodd i is just the second term on the right-hand 
side of (14a) evaluated at d=c, the hard-core radius. 
The differential cross sections for the statistical mixture 

(da/da) ̂ =J (da/dQ) s + | (da/dti) t, (15) 

TABLE V. Partial amplitude coefficients in fermis for odd-parity 
potentials (10b) with 6 = 1.1 F. 

£ = 2 0 MeV £ = 40 MeV £ = 75 MeV £=150 MeV 
SI (Ri $i (Ri $i (Ri $i (Ri $i 

1 0.323 0.025 0.435 0.066 0.427 0.089 0.231 0.036 
0 

3 0.006 • • • 0.024 • • • 0.064 0.001 0.153 0.007 

1 0.175 0.007 0.202 0.014 0.152 0.011 -0.002 ••• 
1 

3 0.006 ••• 0.023 ••• 0.056 0.001 0.1110.004 

35 The partial amplitude coefficients with / = 5-8 were also cal
culated in Ref. 25 for some of these potentials at 75 and 150 MeV. 
The contributions of these higher partial waves are negligibly 
small. 

36 The partial amplitude coefficients (14a) were evaluated at 
d=5 F, the coefficients being essentially independent of d for 
larger values. Starting with the exact solution at the outer edge 
of the square well, the radial Schrodinger equation was integrated 
out to d — 5 F with a fourth-order Runge-Kutta program on the 
University of Colorado IBM 709 computer. With the integration 
interval 0.003 F which was used, the coefficients in Table IV should 
be correct to two decimal places. 
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.ate 

cos 6 

FIG. 2. Average differential cross sections at 20 MeV for even-
parity potentials having b — 1.1 F and odd-parity potentials (10). 
Curve (a) corresponds to odd-parity potential (10a), etc. Forward 
scattering cross section for curve (a) is indicated. 

appropriate to the scattering of unpolarized particles, 
are given in Figs. 2-5 for the potentials with 6=1.1 F. 
The superscript (i=a, b, c) identifies the odd-parity 
potential given in (10a,b,c). The corresponding poten
tials with 6 = 0.7 F lead to relatively smaller contribu
tions to the cross sections from the higher partial waves; 
and the contributions of the higher partial waves are 
relatively greater for the potentials with 6=1.5 F. 
Similar changes have been found for changes in W for a 
given value of 6, the larger values of W leading to rela
tively greater contributions from the higher partial 
waves.25 These reflect the different distributions of at
traction in the region of large separations mentioned in 
connection with Table III. The main effect of an in
crease in b (or W) is to increase the magnitude of the 
oscillations in the angular distributions.26 

The total cross sections <r(i) corresponding to the 
statistical mixture (15) are given in Table VI for the 
potentials discussed in connection with (10). The energy 
dependence of the effect of odd-parity suppression can 
easily be understood in terms of the partial amplitude 
coefficients given in Table IV. For 40 and 75 MeV, the 
contributions of the P-wave amplitudes to the total 
cross sections a(a) are the dominant ones; consequently, 
the appreciable odd-parity suppression considered here 
leads to quite small cross sections for these energies. 
Even parity contributions to a(a) are larger than the 

b 
(F) 

0.7 
1.1 
1.5 

E--
ff<a) 

26.i 
22.7 
21.3 

TABLE VI 

=20 MeV 

20.8 19.o 
16.4 14.4 
13.o 10.2 

Total cross section in millibarns. 

£ = 4 0 M e V £ = 7 5 M e V 
vW a(b) ff(c) ^(a) o-(6) o-(c) 

18.2 8.9 6.2 17.4 8.3 6.2 
18.2 7.6 4.4 18.0 9.2 6.8 
19.8 8.o 3.9 19.6 12.i 9.8 

£ = 1 5 0 MeV 
a(«) <r<&> o-<«> 

16.4 11.9 12. 2 

17.3 14.2 14.8 

19.o 17.i 17.8 

P-wave contributions for 20 MeV (S wave) and 150 
MeV (S and D wave). The dependence of the total 
cross sections on b can be understood from the fact that 
an increase in the value of b leads to relatively greater 
contributions from the higher partial waves. 

If the values of D and scattering cross sections to 
which effective central potentials lead are to be com
pared to investigate the consistency of the descriptions, 
the scattering energies should be in (or at least close to) 
the range of energies which contribute to D. The maxi
mum energy in the two-body zero-momentum frame 
which contributes to D in Eq. (5) is 32.5 MeV for the 
parameters (6) and (7) used here. This energy is about 
the minimum energy for which scattering data were re
ported by Alexander et al.ls and by Arbuzov et al.19; it 
is also near the middle of the energy range for a six-
event sample for which Groves20 reported an average 
cross section. 

Groves20 reported an average cross section (22±10) 

cos 9 

FIG. 3. Average differential cross sections at 40 MeV for even-
parity potentials having b = l.l F and odd-parity potentials (10). 
Curve (a) corresponds to odd-parity potential (10a), etc. Forward 
scattering cross section for curve (a) is indicated. 
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mb for six events in the energy range 5-68 MeV; and 
Alexander et al.1B obtained the average cross section 
(24±9.3) mb for seven events in the range 32-76 MeV. 
These measured cross sections are consistent with the 
cross sections <r(a) given in Table VI, but not with the 
cross sections a(&) and o-(c) for 40 and 75 MeV. If our 
use of effective central potentials is justified for scatter
ing energies as high as these,37 an established cross sec
tion of about 20 mb for energies near 40 MeV, which 
the current data indicate, could rule out odd-parity 
suppressions of the magnitude we have considered in 
(10b,c). Taken with the results of Sec. I l l , this would 
imply an asymptotic binding energy D close to 40 MeV 
because the odd-parity suppression (10b) leads to a 
value of D close to 30 MeV and (10c), to an even smaller 
value. 

The cross sections of Table VI can also be compared 
with empirical cross sections in higher ranges. For 
twenty events in the energy range 68-320 MeV, 
Groves20 reported an average cross section (19±5) mb; 
and Alexander et al.ls obtained an average cross section 
(20.4±7.7) mb for seven events in the range 76-168 
MeV. The cross sections c(a) of Table VI for 75 and 

FIG. 4. Average differential cross sections at 75 MeV for even-
parity potentials having b—1.1 F and odd-parity potentials (10). 
Curve (a) corresponds to odd-parity potential (10a), etc. Forward 
scattering cross section for curve (a) is indicated. 

37 In Ref. 17, Kovacs and Lichtenberg demonstrated that a 
spin-orbit potential could make a significant contribution to the 
scattering cross sections at these energies. There is, however, no 
experimental data which requires for its explanation the presence 
of a potential such as they used. 

0 I I 1 1 1 I I I I I I 
-1.0 -0.6 -CX2 0 02 0.6 J.0 

COS 9 

FIG. 5. Average differential cross sections at 150 MeV for even-
parity potentials having &=1.1 F and odd-parity potentials (10). 
Curve (a) corresponds to odd-parity potential (10a), etc. Forward 
scattering cross section for curve (a) is indicated. 

150 MeV and most of the suppressed cross section a(b) 

and o-(c) for 150 MeV are consistent with these results, 
the effect of odd-parity suppression being relatively 
small at the higher energy. The cross sections <r(a) de
crease slightly with increasing energy, as do the most 
probable values of the average cross sections of Groves 
and of Alexander et al. On the other hand, the cross sec
tions <7(6) and tr(c) increase with increasing energy above 
about 40 MeV. The average cross section (42 ±16) mb 
reported by Arbuzov et al.19 for the energy range 32-
320 MeV is not consistent with any of the cross sections 
of Table VI in this energy range; and it is difficult to 
reconcile the angular distributions of Figs. 2-5 with the 
predominance of backward-scattered A particles re
ported by them. 

V. CONCLUDING REMARKS 

The potentials which we have used were suggested by 
hypernuclear binding energy data, which is determined 
by the A-nucleon interaction for energies up to about 
30 MeV. The comparison of experimental cross sections 
with those calculated with these potentials can be ex
pected to be more meaningful for the energies 20 and 
40 MeV, which we have considered, than they can for 
the higher energies 75 and 150 MeV. Such comparisons 
at the lower energies indicated that agreement can be 
attained only if the interaction in odd-parity states is 
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approximately as strong as it is in even-parity states; 
and this suggests that a value of D close to 40 MeV 
may be expected. 

The validity of the representation of the A-nucleon 
interaction by effective central potentials is doubtful at 
the higher energies we have considered. At these en
ergies, the effects of possible noncentral components 
may be important8,9'17'37 and quite different from their 
effects in hypernuclei. Moreover, there may be an ap
preciable effect from the presence of the S-production 
channel.8,9 The cross sections reported here for the 
higher energies are, therefore, to be considered only as 
the contributions of those components of the A-nucleon 
interaction which can reasonably be represented by ef
fective central potentials at low energies. 

That the presence of the 2J-production channel can 
have a pronounced effect in A-nucleon scattering has 
been emphasized by de Swart et a/.8,9 In particular, de 
Swart and Dullemond8 have calculated A-nucleon scat
tering cross sections with hyperon-nucleon potentials 
deduced from phenomenological nucleon-nucleon poten
tials under the assumption of a universal pion-baryon 

1. INTRODUCTION 

SUPPOSE an unstable particle or state X is produced 
in the reaction 

A+B-+C+X (1.1) 

and then decays according to 

X-+D+E, (1.2) 

where A, B, C, and D have spin zero, and E is either a 

* Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

f This work was reported briefly at the Chicago Meeting of the 
American Physical Society [M. Peshkin, Bull. Am. Phys. Soc. 8, 
514 (1963)]. 

s; interaction. Their cross sections have a prominent peak 
V in the neighborhood of the S-production threshold 

(about 76 MeV in the zero-momentum frame), and 
>n have values above that threshold which are appreciably 
it larger than the average empirical cross sections of 
l- Groves20 and of Alexander et al.ls Although their cross 
ts sections are consistent with the average empirical cross 
ir section of Arbuzov et al.19, the measured and calculated 
)- angular distributions appear to be inconsistent. The 
n cross sections o-(a) to which our effective central poten-
e tials lead for energies above the 2-production threshold 
LS are closer to the empirical cross sections of Groves and 
n of Alexander et al. than are those of de Swart and 
:- Dullemond. Considering the preliminary nature of the 

scattering data, however, it is probably too early to 
ti draw a conclusion from this comparison. 
.s 
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spinless particle or a gamma ray. It was first pointed 
out by Bohr1 that conservation of parity in the produc
tion reaction implies a symmetry condition for the spin 
state of Xy and consequently also for its decay products. 
Bohr found that if the spiny of state X is equal to unity, 
then the angular distribution of its decay is given (for 
spinless E) by 

/(0)=(3/4TT)COS20, (1.3) 

if the intrinsic parity is unchanged in the production 
process, and by 

1(d) = (3/8TT) sin20, (1.4) 
1 A. Bohr, Nucl. Phys. 10, 486 (1959). 
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Spin and Parity Analysis at All Production Angles*f 
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Bohr's symmetry method is applied to an unstable spin-^' state X, which is produced in a reaction A -\-B —-> 
C-\-X and then decays according to X —> D-\~E. Particles A, B, C, D are assumed to be spinless, and E is 
either a spinless particle or a gamma ray. Parity is conserved in production, but not necessarily in decay. 
The angular distribution of E, in the rest system of X, is 1(6) = ̂ aLPL (cos0), where L^2j and the polar 
angle 6 is measured from the normal to the production plane. The coefficients ah depend upon the produc
tion angle 5 and upon the dynamics of the production. It is proved here that the sign of the maximum-
complexity coefficient a^j depends only upon the parity of X, and that the magnitude of a2/ is not zero but 
lies between bounds which depend upon j and the parity alone. The implied test for j and the parity has 
the following advantages: (1) The spin j is equal to half the largest L in 1(6). Addition of a small amount 
of a higher PL, which always improves the fit, is forbidden by the lower bound of a2j. (2) The bounds of a2/ 
are independent of 5. Any (perhaps biased) average over 5 may be performed before expanding 1(6) in the 
PL. (3) All the data are condensed into a single test quantity #2/, whose statistical error is reliably known. 


